

DOI <https://doi.org/10.36719/3104-4735/2/14-18>

Peri Huseynova

Nakhchivan State University

PhD student

<https://orcid.org/0009-0002-7021-7806>

perihuseynova@ndu.edu.az

Nurtaj Rahimova

Nakhchivan State University

<https://orcid.org/0009-0002-0718-1521>

nurrehimi1@gmail.com

Sunay Gulmaliyev

Nakhchivan State University

<https://orcid.org/0009-0008-6662-4023>

sunayhuseyinli9@gmail.com

Eco-Friendly Functional Modification of Biopolymers for Technological Applications

Abstract

The transition toward sustainable material technologies has driven increasing attention to biopolymers as environmentally benign alternatives to conventional synthetic polymers. Owing to their renewable origin and biodegradability, biopolymers present a viable pathway for reducing environmental burdens in multiple technological domains. Nevertheless, intrinsic drawbacks such as limited mechanical robustness, moisture sensitivity, and restricted functional performance often constrain their direct use. Consequently, eco-friendly functional modification has become a central strategy for enhancing the technological relevance of biopolymers.

This article critically examines contemporary approaches employed to modify biopolymers using environmentally compatible methodologies. Emphasis is placed on chemical and physical modification routes that enable property optimization without undermining sustainability principles. In addition, recent progress in the development of biopolymer-based nanocomposites is discussed, highlighting their improved mechanical integrity and multifunctional performance in advanced applications, including packaging and biomedical systems. The interplay between polymer structure and functional behavior is analyzed to elucidate how targeted modifications can improve barrier efficiency, surface characteristics, and active functionalities such as antimicrobial or UV-protective properties. Furthermore, the environmental benefits of biopolymers are evaluated through biodegradability, renewability, and life cycle assessment perspectives. The contribution of modified biopolymers to circular economy frameworks, along with existing technological challenges and future research needs, is also addressed.

Keywords: *biopolymers, eco-friendly functionalization, green materials, nanocomposites, sustainable technology, circular economy*

Introduction

The escalating environmental challenges posed by widespread use of petroleum-based polymers have intensified the search for sustainable alternatives in material science. Biopolymers, derived from renewable sources, offer a promising solution due to their biodegradability and reduced ecological footprint. Their integration into technological applications presents an opportunity to mitigate environmental impact while promoting sustainable development (Wei, 2025).

Despite their potential, native biopolymers often face limitations that restrict their direct applicability in advanced technological systems. These limitations include insufficient mechanical robustness, high moisture sensitivity, and limited functional versatility.

Addressing these constraints requires strategic approaches that can enhance performance without compromising environmental benefits (Rebolledo-Leiva, 2023).

Eco-friendly functional modification has emerged as a central strategy for overcoming these challenges. By employing environmentally compatible methods, biopolymers can be tailored to meet specific technological requirements, thus bridging the gap between sustainability and practical utility (Gudina, 2020).

The present article aims to provide a technology-oriented perspective on eco-friendly modification of biopolymers. It focuses on strategies for enhancing functional performance, the relationship between structural properties and application potential, and the broader implications for environmental sustainability and circular economy integration (Venkteshwar, 2024).

Research

Environmentally Compatible Modification Approaches. In recent years, biopolymers have emerged as strategic materials in the pursuit of sustainable technological solutions. Their derivation from renewable resources positions them as promising substitutes for fossil-based polymers, particularly in applications requiring reduced environmental impact (Jalil, 2024). However, the performance limitations of unmodified biopolymers require targeted modification strategies to meet technological standards (Sultanov et al., 2023). Eco-friendly modification techniques generally fall into chemical and physical categories. Chemical approaches involve the selective introduction of functional groups using milder, low-toxicity reagents, enabling improvements in flexibility, thermal endurance, and mechanical performance while preserving biodegradability (Cherian, 2023). Physical modification strategies, including polymer blending and composite fabrication, offer an alternative route by exploiting intermolecular interactions to adjust material properties without permanent chemical alteration (Mehta, 2024). From an industrial perspective, these methods are advantageous due to their relative simplicity and scalability.

Beyond conventional modification routes, the integration of nanoscale components into biopolymer matrices has attracted considerable attention. Such biopolymer-based nanocomposites exhibit enhanced strength, stability, and functional versatility, allowing their application in technologically demanding environments (Sharma, 2025). The combination of biodegradability and improved performance has led to their classification as green nanocomposites, underscoring their relevance in eco-conscious material design (Khan, 2025).

Structural Characteristics and Functional Performance. The response of biopolymers to modification processes is inherently linked to their molecular and supramolecular structure. Attributes such as hydrophilic–hydrophobic balance, crystallinity, and chain mobility govern the effectiveness of functionalization strategies. Modifying these structural parameters can significantly enhance surface wettability, mechanical resistance, and barrier properties, thereby broadening the range of viable technological applications (Biswal, 2024).

Functional adaptation through modification enables biopolymers to acquire properties tailored to specific end uses. The incorporation of antimicrobial functionalities or UV-shielding capabilities, for example, has proven particularly valuable in packaging, textile, and surface-coating technologies (Daget, 2025). Such tunability illustrates the potential of biopolymers to serve not merely as passive materials but as active components within advanced technological systems.

Environmental Benefits and Sustainability Assessment. The ecological advantages of biopolymers are primarily associated with their biodegradability and renewable feedstock origin. These characteristics contribute to reduced fossil fuel consumption and lower greenhouse gas emissions when compared to conventional plastics (Mohan, 2024). In short-life-cycle applications, such as food packaging, biopolymers can substantially mitigate long-term environmental pollution (Jayakumar, 2020).

To ensure that these benefits are realized in practice, life cycle assessment (LCA) has become an indispensable evaluation tool. LCA studies provide insight into the environmental footprint of biopolymer production, use, and disposal, demonstrating that appropriately engineered biopolymer

systems can reduce waste generation and ecosystem contamination across their entire life span (Edo, 2025).

Biopolymers and Circular Economy Integration. The alignment of biopolymers with circular economy principles represents a major driver for their technological adoption. Their capacity for biological degradation and reintegration into natural cycles minimizes persistent waste and alleviates pressure on non-renewable resources (Getahun, 2024).

As a result, biopolymers are increasingly regarded as key enablers of resource-efficient material cycles.

Owing to their structural diversity and functional adaptability, biopolymers have found application across a broad spectrum of industries, including food packaging, pharmaceuticals, and construction materials (Kalemtas, 2025).

In particular, biodegradable packaging solutions exemplify how biopolymers can replace single-use plastics while supporting circular economy objectives and sustainability policies (Wang, 2025).

Challenges and Future Outlook. Despite their promise, several obstacles continue to limit the widespread industrial implementation of biopolymers. Economic factors, such as production cost, along with technical issues related to material consistency and processing, remain significant challenges (Boopathi, 2024).

Addressing these limitations will require advances in modification chemistry, composite engineering, and large-scale manufacturing technologies.

Future progress in biopolymer-based systems will depend strongly on interdisciplinary collaboration among chemists, materials scientists, engineers, and industrial stakeholders. Such cooperation is essential for translating laboratory innovations into commercially viable, environmentally responsible technologies (Fodor, 2025).

Conclusion

The present study demonstrates that eco-friendly functional modification of biopolymers is essential for enhancing their applicability in technological systems. Through chemical, physical, and nanocomposite-based approaches, biopolymers can be tailored to improve mechanical properties, barrier efficiency, and functional characteristics such as antimicrobial activity and UV protection. These modifications enable biopolymers to meet diverse industrial demands while preserving their environmental advantages.

Biopolymers' inherent biodegradability and derivation from renewable resources allow their integration into sustainable practices, contributing to reduced environmental impact, lower carbon footprint, and alignment with circular economy principles. By adopting these materials, industries can replace conventional synthetic polymers with environmentally compatible alternatives, thereby promoting resource efficiency and waste reduction.

Despite these benefits, challenges such as production scalability and material performance variability remain. Addressing these limitations will be crucial for expanding the practical use of modified biopolymers. Continued innovation in functional modification techniques and a clear understanding of the relationship between structure and performance will be key to unlocking their full potential.

In summary, eco-friendly functional modification transforms biopolymers into versatile, high-performance materials suitable for sustainable technological applications. Their development supports environmental preservation, resource-efficient material use, and the advancement of circular economy objectives, positioning biopolymers as strategic components for future eco-conscious technologies.

References

1. Biswal, T. (2024). Future perspectives of biopolymeric industry. *Physical Sciences Reviews*, 9(9), 2965–2988. 10.1515/psr-2022-0192
2. Boopathi, S. (2024). Sustainable Biopolymers: Applications and Case Studies in Pharmaceuticals, Medical, and Food Industries. Artificial Intelligence and Metaverse through Data Engineering, Nova Science Publishers, Inc.
3. Cherian, R.M., Kargarzadeh, H., Rosli, N.A., Jose, C., Thomas, S. (2023). *Tuning the Hydrophilic/Hydrophobic Behavior of Biopolymers: Surface Modifications*. Handbook of Biopolymers, Springer Nature.
4. Daget, T.M., Kassie, B.B., Tassew, D.F. (2025). A shift from synthetic to bio-based polymer for functionalization of textile materials: A review. *International Journal of Biological Macromolecules*, 306, 141637.
5. Edo, G.I., Mafe, A.N., Ali, B.M., Aliyu, M.R. (2025). Evaluating the environmental impact of biopolymer-based packaging compared to conventional plastics in the food industry. *Sustainable Chemistry One World*, 8, 100145. <https://doi.org/10.1016/j.scowo.2025.100145>
6. Fodor, F., Bak, M. (2025). Biopolymer-Based Solutions for Sustainable Wood Modification: A Review of Current Advancements. *Forests*, 16(9), 1463. <https://doi.org/10.3390/f16091463>
7. Getahun, M.J., Kassie, B.B., Alemu, T.S. (2024). Recent advances in biopolymer synthesis, properties, & commercial applications: A review. *Process Biochemistry*, 145, 261–287. <https://doi.org/10.1016/j.procbio.2024.06.034>
8. Gudina, E.J., Amorim, C., Braga, A., Silverio, S., Rodrigues, L.R. (2020). Biotech Green Approaches to Unravel the Potential of Residues into Valuable Products. *Nanotechnology in the Life Sciences*, 97–150. 10.1007/978-3-030-42284-4_5
9. Jalil, M., Repon, Md. R., Halim, A.F., Alim, Md. A. (2024). *Environmental impact of chemically modified natural biopolymers*. Handbook of Natural Polymers, Elsevier.
10. Jayakumar, A., Heera, K.V., Sumi, T.S., (...), Radhakrishnan, E.K. (2020). *Advances with synthesis and applications of green bionanomaterials*. Advanced Structured Materials, Springer.
11. Kalemtas, A., Aydin, G., Kurt-Kızıldoğan, A., Topates, G. (2025). *Extraction of Biopolymers from Nature and Their Characterization*. Biopolymers for Water Purification, Wiley.
12. Khan, C.J., Irving, O.J., Al-Waqfi, R.A., Ferrari, G., Albrecht, T. (2025). Constructing a Nanopipette-Based DNA Electromechanical Device. *Nano Letters*, 25(51), 17852–17859. <https://doi.org/10.1021/acs.nanolett.5c05156>
13. Mehta, J., Mittal, P., Gupta, P. (2024). *Biopolymers and Sustainable: Biopolymers Based Composites: Fabrication Failure and Repairing*. Fabrication Techniques and Machining Methods of Advanced Composite Materials, CRC Press.
14. Mohan, S., Muthulakshmi, L., & Hariharan, N. (2024). Impact of biopolymers in a circular economy. *Nanotechnology in the Life Sciences*, 413–436. https://doi.org/10.1007/978-3-031-68834-8_16
15. Rebolledo-Leiva, R., Ladakis, D., Ioannidou, S.-M., Moreira, M.T., Gonzalez-Garcia, S. (2023). Attributional and consequential life cycle perspectives of second-generation polylactic acid: The benefits of integrating a recycling strategy. *Journal of Cleaner Production*, 420, 138354. <https://doi.org/10.1016/j.jclepro.2023.138354>
16. Sharma, D., Bansal, S., Jain, P. (2025). *Green Nanocomposites: Incorporating Biopolymers into Plastics for Enhanced Environmental Sustainability*. Sustainability in Polymer Technology and Plastics Engineering: Concepts, Strategies, and Opportunities, Apple Academic Press.
17. Venkteshwar, Y., Dharm, P., Anil Kumar P. (2024). Nanofillers as a potential key for shaping the future of the industries. *Hybrid Advances*, 7, 100340. <https://doi.org/10.1016/j.hybadv.2024.100340>

18. Wang, W., Liu, X., Yang, H., Pei, Z., Zou, W. (2025). Dual-Function Photothermal Wood Composites: Leveraging Graphene for Solar Conversion and Biopolymers for Sustainable Encapsulation. *ACS Sustainable Chemistry and Engineering*, 13(50), 21854–21867. <https://pubs.acs.org/doi/10.1021/acssuschemeng.5c11765>
19. Wei, N.-N., Fu, Y.-H., Xiong, Y.-T., Ying, Y.-L., Zhang, L.-M. (2025). A three-stage translocation model for revealing nanopore fingerprint signatures. *Chemical Communications*, 61(98), 19473–19476. <https://xlink.rsc.org/?DOI=D5CC05510E>

Received: 29.06.2025

Approved: 07.12.2025